大赛名称 | MICCAI2022 Challenge: GOALS |
---|---|
详情链接 | https://aistudio.baidu.com/aistudio/competition/detail/230/0/introduction |
大赛简介 | 比赛背景Challenge DescriptionGOALS挑战赛是由百度在MICCAI 2022上举办的国际眼科赛事。MICCAI是由国际医学图像计算和计算机辅助干预协会 (Medical Image Computing and Computer Assisted Intervention Society) 举办的跨医学影像计算和计算机辅助介入两个领域的综合性学术会议,是该领域的顶级会议。与此同时,百度将在MICCAI 2022上组织第九届眼科医学影像分析研讨会Ophthalmic Medical Image Analysis (OMIA9)。 The GOALS Challenge is an international ophthalmology competition held by Baidu at the MICCAI2022. MICCAI is a comprehensive academic conference in the fields of medical image computing and computer assisted intervention, and is the top conference in these fields. At the same time, Baidu will organize the 9th Ophthalmic Medical Image Analysis Workshop (OMIA9) at MICCAI 2022. 赛题背景Task Background光学相干断层扫描(OCT)因其无接触、非侵入性的特点,已成为眼部疾病诊疗中的常规检查,可为医生提供视网膜结构图像。与只能提供视网膜表面信息的彩色眼底图像相比,OCT图像可以提供视网膜的横断面信息,因此可以更准确地分析视网膜结构。层的分割和厚度量化对许多视网膜和视神经疾病的诊断有帮助,例如青光眼、黄斑变性或糖尿病性视网膜病变。在青光眼的诊断中,使用OCT比使用眼底彩色图像更容易发现早期病例。因此,本次挑战赛围绕OCT图像设计了两个任务:
由于深度学习方法在OCT图像分析中的高性能,相信很多参与者会使用这种方法。为了满足深度学习方法训练过程中广泛分布的数据集的要求,我们提供了由两种不同设备收集的300张环扫OCT图像。 Optical Coherence Tomography (OCT) is a powerful tool for the diagnosis of ocular diseases, since the image acquisition consists in a contactless, non-invasive method which gives a set of images of the main retinal structures in real time. Compared with color fundus images, which can only provide retinal surface information, OCT images can provide a cross-sectional information of the retina, so it can be more accurate analysis of the retinal structure. Segmentation and quantification of layer thickness is useful in the diagnosis of many retinal and optic nerve disorders, for example, glaucoma, macular degeneration or diabetic retinopathy. In the diagnosis of glaucoma, it is easier to detect early cases using OCT than using fundus color images. In this challenge, we design two tasks around OCT images:
It is believed that many participants will use the deep learning method due to its high performance in OCT image analysis. To meet the requirement of widely distributed dataset in the training process of the deep learning methods, we provide 300 circumpapillary OCT images collected by two different devices. |
举办方 | 百度、中山大学、灵医智惠 |
参赛方式 | (1)所有参赛选手都必须在百度大脑AI Studio平台注册报名; |
注:信息来源于赛事平台,侵删 |